
End-users’ integration of applications and
devices: a cooperation based approach

Marco P. Locatelli and Carla Simone

Abstract T
he current organizational and technological evolution suggests to conceive tai-

lorability and EUD also in terms of integration of off the shelf applications and
devices that support collaboration. To this aim this chapter proposes an approach
that leverages the ability of actors to coordinate their activities and then grounds
integration on the notion of cooperation. The resulting technological environment
is presented and illustrated through a case derived from an ongoing project. Some
considerations derived from a short experimentation conclude the chapter.

Key words: EUD, Tailorability, End-user, Cooperation, Coordination, Awareness,
Integration

1 Introduction

Environments supporting tailorability and End Used Development (EUD) are called
nowadays to offer their functionalities in a different scenario with respect to earlier
approaches and solutions [12]. From a technological point of view, we are witness-
ing an explosion of open source software applications: they are not always reaching
the desired level of robustness and quality of documentation but surely they con-
stitute a reference asset that is going to increase its quality and re-usability. In any
case, today almost all available applications guarantee their openness through API
(Application Programming Interface).

Marco P. Locatelli
University of Milano-Bicocca, viale Sarca 336, Milan, Italy, e-mail: locatelli@disco.unimib.it

Carla Simone
University of Milano-Bicocca, viale Sarca 336, Milan, Italy, e-mail: simone@disco.unimib.it

1

2 Marco P. Locatelli and Carla Simone

More interestingly, from the organizational point of view, companies need to be
flexible enough to timely react to external (and sometimes internal) changes. This
means that an organization survives if it balances in an effective way two comple-
mentary activities: the management of the corporate processes and information that
support its mission and guarantee its overall robustness; and the management of
the day-by-day activities that guarantee the fulfillment of those general goals by a
distributed problem solving and coordination that involves groups of people acting
at the frontiers of the organization itself and then needing a more flexible way to
organize their joint work. Thus, we are witnessing an increasing number of situa-
tions where users need to negotiate their behavior with other users, as members of
more or less consolidated communities [19]. In all these different situations, com-
munities can take various forms and have a varying life span [2]: however, all of
them have to establish some basic behavioral rules and conventions to survive and
be effective toward their members and their hosting organization. To this aim, the
technologies the organization makes them available (typically, corporate informa-
tion systems) have to be flanked by (compositions of) technologies that, altogether,
better respond to their local needs: technologies that are conceived to support local
activities without a strong focus on persistency, efficiency, uniform adoption, and
are instead more focused on requirements as heterogeneity, malleability, immedi-
ate appropriation, user control and the like. This view motivates a shift of interest
from tailorability of single (collaborative) applications, e.g. [11], (possibly adopted
across the organization) towards the tailorability of local compositions of existing
applications, as a complement to the former kind of tailorability [20].

The point we want to make is that, irrespective of any details of how it is con-
ceived and implemented, integration is usually proposed in terms of mutual control
among applications, as for example in Web Services Architectures (SOA) [9] and by
the so called mashups [21]. This approach takes the point of view of the professional
programmers who reason in terms of system functionality and are skilled enough to
deal with all the technical details implied by this kind of composition. On the con-
trary, end-users are driven by their needs to coordinate their individual and collabo-
rative activities according to the aims, rules and conventions of the community they
belong to. So, why not to take the cooperation point of view in defining a framework
that supports end-users in composing the applications they deem as useful for their
local needs and why not to leverage on the long tradition of collaborative work stud-
ies? Empirical studies, especially in the CSCW framework, have uncovered that the
mechanisms supporting cooperation can be described as the composition of artifacts
and protocols in combination with the awareness of what is going on in the context
(e.g., [18]). Since actors are familiar with the above mechanisms it should be natural
for them to apply the same principles not only to coordinate their mutual behavior
but also to define how useful applications might interact to support it since both
kinds of interactions can be defined at the same time, by means of the same concep-
tual tools [16] (see Figure 1 (left)). This approach is in the line of component based
tailorability [20] but in addition it offers an explicit way to compose/integrate pieces
of software by means of a clear and hopefully friendly metaphor. In this approach,
we aim to bring to the technology the “controlled flexibility” typical of human co-

End-users’ integration of applications and devices: a cooperation based approach 3

operation instead of constraining human beings to conceive their own behaviors in
terms of the capability of the technology.

This chapter presents how we exploited the CASMAS framework1, which sup-
ports this view of integration and illustrates its application in a case derived from
an ongoing project in our University. Some considerations derived from this short
experimentation conclude the chapter.

Fig. 1 CASMAS provides a uniform view of cooperation (left). The CASMAS model: entities can
represent either persons or applications/devices (right).

2 The metaphor and the language underlying the framework

Suppose that a set of applications and devices have to be integrated to support a
set of actors cooperating through them. According to the Community-Aware-MAS
(CASMAS) framework they all are represented as entities and become members of a
community: as such, they coordinate their behaviors through a Common Information
Space (CIS) [3], called fulcrum2, that contains the coordinative information, possi-
bly articulated in coordinative artifacts [13]. Moreover, the fulcrum contains the
behaviors that are dynamically assigned to each entity to make it an active member
of the community: the use of behaviors is similar as in the Actor Model [1]. Like
this model, communication is asynchronous but it is not message based. Instead,
when an entity posts a request in the fulcrum, other entities will react to this request
according to the behaviors currently assigned to them. In addition, entities promote
mutual awareness by being located in an awareness space where awareness informa-
tion is propagated from a source entity along the space structure (topology) [17, 4].
An awareness space can represent the physical space, but also be a logical space: for
example, it can represent a set of roles and their relationships as edges connecting
them. Figure 1 (right) sketches a community, its fulcrum and awareness space. An
entity can be member of more than one community and can be located on more than
one awareness space: in this case it allows the exchange of information among the
communities the entity belongs to.

1 A previous formulation was presented in [7].
2 This term is used to emphasize the pivotal role of this space in cooperation.

4 Marco P. Locatelli and Carla Simone

The CASMAS framework has associated a language to specify entities, their be-
haviors and the awareness management. This language takes the declarative form
of facts and rules (when-then constructs), which offers the possibility to express be-
haviors in a highly modular way, without the need to define complex and exhaustive
control structures [14, 15]. The rules constituting an entity’s behavior express what
the entity is expected to do when some conditions are satisfied [15]. These condi-
tions are matched against the facts contained in the community’s fulcrum and in the
entity’s local memory, and against the awareness information from the community’s
spaces where the entity is located; the action(s) the entity should do updates either
the community fulcrum/awareness spaces or the memory of the entity itself.

The integration of a software application/device is realized by inserting a fact
in the memory of the entity representing it and by defining the behavior of this
entity. The fact contains pairs attribute-value that specify the information the appli-
cation/device makes available for sake of coordination with, and awareness promo-
tion for, the other entities of the same community; the entity’s behavior expresses
conditions (among others) on the concrete application/device attributes (when) and
invokes some of the functions the application/device exposes to the community
(what): actually, the entity is a sort of wrapper that mediates between the concrete
application/device and the integration environment (community). For example, if a
DMS (Document Management System) is defined so as to provide the number of
downloads in one of its attributes and exposes a function to build a report of some
occurred events, users may define rules such as:

a semi-formal rule to express the behavior of a DMS
when
today’s downloads are more than 1000

then
share the report of the today downloads
with the community

Actually, the CASMAS framework uses the Drools3 rule editor and its capability
to express rules in semi-formal terms. This possibility realizes a sort of self docu-
mentation and facilitates rules formulation and understanding. This is particularly
important since end-users (in the true spirit of EUD) share with other end-users sin-
gle rules up to whole behaviors: thus documentation plays an important role in reuse
or adaptation of exiting rules/behaviors.

When a user wants to define or modify a coordination/awareness pattern, she
is facilitated by the high modularity of the overall approach. In fact, behaviors are
clearly assigned to entities and then any definition/modification of a rule constituting
a behavior affects very delimited portion of the system: the behavior itself and those
of the entities involved by the rule at hand. This makes it easier to cross-check
the consistency of the definition/modification since it is univocally specified which
entity is in charge of making true each condition and of providing each function
constituting a rule [16].

3 www.jboss.org/drools

End-users’ integration of applications and devices: a cooperation based approach 5

3 The framework put to work

The basic constructs of the language can be uniformly used to express entities’
behaviors at any level of abstraction (see Figure 2) where each level can use the
primitives defined at the level(s) below. The language (constituting the first level)
provides the following basic constructs (only the ones managing coordination and
awareness are presented): assert, retract, modify a fact in a fulcrum, move an entity
in a space, makeAware about an information, AwareOf to test if an entity perceives
some kinds of awareness promoting information. The next level makes available do-
main/application/device independent primitives, like postRequest and copyFact, and
predicates like Request and Response: they express coarser and recurrent pieces of
behaviors that are likely to facilitate integration in terms of coordination of generic
components. The level immediately above contains the interfaces (services) pro-
vided by domain independent applications/devices: for example, the basic I/O prim-
itives of a interactive table or the basic functionalities of a DMS (as described in the
previous section). Then the domain dependent behaviors are defined at the highest
level, possibly with different degree of visibility of the levels below, according to
the needs of the community. In fact, this visibility depends on the kinds of technical
skill characterizing different classes of users, on the complexity of the integration to
be realized, on the organizational norms, and so on. The basic point is that any user
applies the same declarative pattern at each level either to define/modify/compose
the primitives/predicates available at that level, or to enrich them by using the prim-
itives/predicates of the levels below [16]. A best practice is to organize each level so
that it is clear what it makes available and the knowledge required to operate at this
level: the knowledge only, since the language is always the same.

Fig. 2 Abstraction levels.

A framework supporting tailorability and EUD has to clarify how the different
kinds of users are expected to use it. According to the EUD literature, there are at
least three kinds of users: developers, power-users, and end-users [12]. In CASMAS
developers are expected to set up and maintain the overall framework: in particular,
they are in charge of the two bottom levels of Figure 2. Hence, they define the basic
primitives/predicates that are domain independent in that they express the elemental
interactions with the fulcra and the awareness spaces, their applications and devices.

6 Marco P. Locatelli and Carla Simone

In the previous section we mentioned the basic ones but nothing prevents a specific
instantiation of the framework to add new primitives/predicates if needed. Develop-
ers are also in charge of constructing the wrappers for the functionalities offered by
the applications/devices to be coordinated: they can be used in the right part of the
rules at the next higher level of abstraction. These two activities require technical
skills that the other kinds of users are not expected to possess. The highest level is
the realm of end-users and power users. Power-users are end-users with technical
skills suitable to manage the dynamic configuration of the coordinated applications,
mainly by adding new behaviors or high level primitives/predicates. In principle any
end-user is enabled to manage dynamic configurations: however our experience and
the literature (e.g., [8]) show that often end-users delegate the construction of diffi-
cult interactions to more skilled users. In other words, end-users may need a “human
proxy” between them and the tailored application: power users are the best candi-
dates to play this role because they belong to the community, understand the needs
of their “costumers” and know about the rules and conventions holding within the
community itself. They are then able to express them in terms of behaviors, i.e., sets
of rules, that can be made available to the other community members. End-users
are expected to tailor existing behaviors by adapting the set of rules they contain.
More experienced end-users can build completely new behaviors by writing new
set of rules, possibly with the help of some power-users. In this paradigmatic allo-
cation of responsibilities end-users are not expected to act as “systems integrators”
or “software architects”: instead, they are called to think in terms of which kind of
coordinated behavior they are able to offer and want to get from the community
in response to their common needs. This behavior has to be negotiated among the
actors (as it happens irrespectively of the available technology) and then properly
implemented by using the features made available by the framework.

4 Case study

In the context of the GAS (Grandi Attrezzature Scientifiche) - Intelligent Building
project of our University we set up a room with some facilities for group work: an
interactive desk, some interactive whiteboards, a localization technology, small and
medium size interactive screens, and artifacts “augmented” by means of localization
tags to make them traceable in the room (for example, books with a localization tag
attached). The above interactive devices allow actors to use software applications to
support group work and (new) content production by accessing their own contents
or the contents provided by other people.

The case study we present in this chapter involved a class of fourteen students
divided in three groups (two groups of 5 persons and one group of 4 persons). The
students were familiar with computer usage and owned a background in psychology
(one person per group own advanced skills in computer usage; two of them have
been involved in doing power-user tailorability, see Section 4.2.4). The supervisor
asked to groups to prepare a report on a common topic in psychology. The groups

End-users’ integration of applications and devices: a cooperation based approach 7

met twice a week for about two months to collaboratively prepare the report with
the support of the supervisor. From time to time the supervisor made some contents
available to the class to orient the work of the three groups. To support this super-
vised collaboration the room was configured as follows: the desk is reserved to the
supervisor and runs an application to manage personal contents and possibly make
them publicly available to the class; each group owns a whiteboard providing a work
space where to manage group, personal, or publicly available contents. During three
meetings students and supervisor were told about the CASMAS framework and
language as well as about the features made available by the basic configuration.
Then they started to autonomously use this framework: when tailoring was needed
students tried to solve the problem by their own and came to us only to validate
their solution or to ask for our help. Students were familiar with the DMS that man-
aged the content/documents they needed: it was configured so that single actors and
groups can have their own repositories. The rest of this section describes how the
basic configuration (referred to as “system”) was constructed and then tailored by
the students to respond the needs arisen during its usage.

4.1 Configuring the system

According to the approach presented in Section 2, we (as developers) implemented
the initial system configuration that includes the following fulcra and awareness
spaces :

• group X fulcrum: a community fulcrum for each group (see Figure 3
(left));

• class fulcrum: a community fulcrum for all the actors involved, i.e. stu-
dents and the supervisor;

• contents space: a space to promote awareness of available contents (see
Figure 3 (left)) ;

• room space: a space representing the physical localization inside the room
of all the involved actors to manage awareness promotion about their presence.

The contents space contains a group-X content node for each group:
these nodes are linked to the public content node to support the propagation
of awareness information about the availability of group and public content, re-
spectively. Actually this is a simplification of the actual contents space: it is
sufficient to discuss the usage of the framework presented in this chapter.

In addition, the configuration contains the entities that stand proxy for the three
groups, the supervisor and for the following “technological actors”: one entity for
the interactive desk (IDesk); one entity for each interactive whiteboard (IWB-X);
one entity for the public wall (PWall); one entity for each group to manage its
interactions with the DMS (DMS-X).

Figure 3 (left) considers only the portion of the whole configuration that will be
used in the rest of this chapter and shows how the above entities are connected to

8 Marco P. Locatelli and Carla Simone

Fig. 3 Basic configuration (left). Multiple entities associated to one shared application (right).

the fulcra and to the contents space. Moreover, groups members are linked to
the fulcrum related to their group, and the supervisor is linked to the fulcrum related
to the class (these links and the latter fulcrum are omitted in the figure).

In a cooperative setting, some applications (typically, a DMS as in our case) are
shared among several users and groups as a resource provided by the organization
they belong to. However, users and groups might want to define different local in-
teractions with this resource, according to their needs. In CASMAS this is realized
by associating more that one entity to a single application instance and to connect
each of them to the appropriate fulcrum (see Figure 3 (right)).

Each entity of the basic configuration has associated a “standard” behavior. In
the following we illustrate a small portion of system behavior concerning a case
of awareness promotion that involves IDesk and PWall. Patterns related to other
forms of cooperation will be shown later on. When a new content is moved from the
personal to the public area of the interactive desk (typically, by the supervisor), the
IDesk uses the contents space to make the other entities aware of this event
(makeAware primitive, see Section 2). The related awareness information is prop-
agated in the space from the public content location because the IDesk is
situated there, and reaches all the group X content locations. PWall becomes
aware of the new available content because it is situated at the public content
node and owns (by design) the following rule (rule RD1 PWALL) that realizes the
following reaction: PWall shows the new content to make it publicly available.

Rules are hereafter presented using the semi-formal notation of Drools.

rule "RD1_PWALL-show publicly available content"
when
aware of content available on space CONTENTSSPACE

then
show content

end

where aware of is a construct defined at the CASMAS language level. The
show action is defined at the application dependent level. Notice that the IWB-Xs
do not react to the presence of any new available content because the developers
did not define a similar rule in their behavior, even though this kind of awareness
promoting information reaches all the locations where they are located.

End-users’ integration of applications and devices: a cooperation based approach 9

4.2 Tailoring the system

During the case study we observed different situations in which power users or end
users felt the need to modify the basic system configuration giving rise to different
kinds of tailorability.

4.2.1 End-user tailorability

Two of the three groups improved the support provided by the system. Members of
group ‘A’ recognized it was useful for them to have the public contents available
for future use. Members of group ‘B’ identified a different requirement: they would
have the public contents visualized also on their local IWB in addition to the public
wall. In this way the group could elaborate their report having these contents ready
at hand during their collaboration. Then Group ‘A’ defined two rules that illustrate
a typical cooperation pattern between two applications through the fulcrum. By the
first one (rule R2 IWB) the IWB-A posts a store request to group A fulcrum
when it is aware of the new available content.

rule "R2_IWB-privately store public content"
when
aware of new content available in space CONTENTSSPACE

then
post a "store" request of this content to the group

end

post is a construct at the domain/device/application independent level, as al-
ready mentioned in Section 2.

By the second rule (rule R2 DMS) the DMS responds to the “store request” by
storing the content through the functions of the DMS application. The content is
stored in the current activity area of the repository.

rule "R2_DMS-privately store public content"
when
there is a "store" request from the group
group is carrying on an activity

then
store content contextually to the current activity

end

request is a fact at the domain/device/application independent level, as well as
post; current activity is a fact defined at the domain dependent level that
models the current activity and its attributes (e.g., its name) that the group is carrying
on. In the basic configuration used in the case study the
current activity fact was asserted as a static information useful to allocate
to a specific area the contents generated during the case. In a more general situation,
this naturally dynamic information could be obtained from a WFMS application for
which current activity is defined as one of its attributes (see Section 2).

Group ‘B’ needed to define only one rule to let the IWB-B show the content
when it becomes aware of a new available content (rule R3 IWB).

10 Marco P. Locatelli and Carla Simone

rule "R3_IWB-show public content"
when
aware of content available on space CONTENTSSPACE

then
show content

end

After group ‘B’ used the system for a while, its members realized that every time
a public content was available on their IWB they naturally focused on that content;
in order to make its fruition easier they also minimized the current content to have
more space for the new content. Hence, the group decided to change the above rule
(rule R3 IWB) to minimize the current content area before the public content was
shown, by adding the “as main content” clause to the action part of the rule

...
show content as main content
...

Group ‘B’ found group ‘A’ “storing behavior” very useful. Accordingly, group
‘B’ updated the behavior of their IWB-B with the functionality implemented by
group ‘A’ . In this way they did not only viewed the public content but also had the
content stored in the DMS.

4.2.2 Domain language as support of tailorability

As mentioned in Section 2, the semi-formal language supported by Drools to define
a Domain Specific Language (as Drools calls it) can be used both to offer a more
user friendly version of the CASMAS language and to construct a semi-automatic
documentation of system behavior [16]. Users appreciated this possibility because
this made easier and more natural for them to conceive the rules, and also because
the semi-formal language allows one to hide some technical details (as we will dis-
cuss in Section 5). We present here as an example the formal version of rule R3 IWB
defined for the IWB-B by group ‘B’:

rule "R-F-1"
when
AwareOf(space=="$CONTENTSSPACE$",
type=="content available", contentURL:awarenessData)

then
application.minimizeContent();
application.showContent(contentURL);

end

This formal rule is automatically derived from rule R3 IWB by means of the
following mappings where the semi-formal version is associated (by ‘=’) with its
formal counterpart and the texts in curly brackets define the rule parameters to be
instantiated: in this case, the type of awareness information and the awareness space
where the information is perceived.

[when]aware of {awareness type} on space {space name}=
AwareOf(space=="{space name}",

End-users’ integration of applications and devices: a cooperation based approach 11

type=="{awareness type}", contentURL:awarenessData)
[then]show content as main content=
application.minimizeContent();
application.showContent(contentURL);

Notice that the semi-formal formulation does not contain any reference to the
information content: in fact, the rule does not define any specific condition on it.
However, the content appears as an attribute in the formal specification. Although
this kind of parametrization might be considered simple and not so powerful, it
allows one to adapt it to compose other rules managing other types of awareness
information, e.g. about an updated content. The Drools factory supports users in
building the mappings through a graphical user interface (that generates the above
textual mapping structure) although in a not completely satisfactory way: we will
come back to this points in the conclusions.

Finally, the action show content as main content ([then] mapping)
expresses the users’ needs in one sentence: in fact, “as main content” implies that
all the other contents have to be minimized. The abstraction of a sequence of actions
into a single sentence is very powerful also to avoid accidental omissions, in partic-
ular when some actions have to be done only to maintain system consistency. Rule
R2 DMS is an example as the response to a request implies the request deletion.
This rule is translated into the following formal rule

rule "R-F-2"
when
request:Request(assertedIn=="$GROUP$",
service=="store", contentURL:params)

CurrentActivity(assertedIn=="$GROUP$",
activityName:name)

then
application.store(contentURL, activityName);
retract(request);

end

by means of the following mapping:

[then]store content contextually to the
current activity=application.store(contentURL,
activityName); retract(request);

In our experience, to start using the semi-formal language end-users need the
assistance of a power user: then, they start using the mappings to build new semi-
formal rules. Only after a longer experience they define the needed mappings by
their own, typically by adapting the ones they had used before.

4.2.3 Tailoring information provided by applications

During the case study the students came to understand how to extend the set of
attributes that the developers defined to convey information from the DMS to the
coordination space (i.e, groups fulcra) since they didn’t find a solution by them-
selves. During the discussion to give an answer to this request they appreciated the

12 Marco P. Locatelli and Carla Simone

fact that this was possible in a way that they could understand. In fact, it would
only require the invocation of some pertinent application method(s) as shown by the
following example (RAPP-1) that we used to illustrate the solution.

rule "RAPP-1"
when
there is a "number of docs" request from the group

then
post number of docs to the group

end

where the post of “number of docs” information should be defined in the mapping
as:

int numberOfDocs = application.getDocsCount(dir);
assert(new DirDocsCount(assertedIn="$GROUP$",
directory=dir, count=numberOfDocs));

The students told us that this kind of tailoring would require the help of the
developers: however, they felt they could formulate the related request with an idea
of what it would require to be implemented. Power users instead were confident
that, if the application methods were sufficiently well documented, they would be
able to handle the simplest cases by their own.

4.2.4 Power-user tailorability

The awareness promotion about new content produced by other groups was a fea-
ture required by the participants since they like to stay informed. However, end-users
were not able to define this behavior by themselves, mainly because it is not simple
for them to implement a message starting from the URL of the content to be shown.
Hence, a couple of recognized power-users committed themselves to cooperatively
build the new behavior for their colleagues. The two power users negotiated the fol-
lowing assignments, according to their skills. One of them defined a new rule to be
added to the IWB-X behavior, which shows the desired message when this device
is aware of a new content (thus, using a previously unexploited information). The
second power user defined the function that creates the new message by extract-
ing information from the URL of the awareness information content. Although this
power user was not a professional developer, she was able to look for some tutori-
als on the Web4 to implement the needed function, called createMessage, by
adapting standard patterns they make available.

rule "R1_IWB-show awareness about groups’ content"
when
AwareOf(space=="$CONTENTSSPACE$",
type=="group content created",
contentURL:awarenessData)

then
show content awareness

4 e.g. www.exampledepot.com/egs/java.net/ParseURL.html

End-users’ integration of applications and devices: a cooperation based approach 13

String awMessage = createMessage(contentURL);
application.showAwarenessMessage(awMessage);

end

function String createMessage(String contentURL) {
URL url = new URL(contentURL);
String documentName = url.getFile();
String message = documentName + " is available";
return message;

}

createMessage is a function that she defined at the domain dependent level,
since it defines for the specific community how the actors are informed about a new
content produced by other groups. To adopt this new behavior each group uploaded
it in its own fulcrum so that the IWB of each group acquires this behavior and
behaves accordingly to the community’s agreement. The above kind of division of
labor was observed in several circumstances: it is favored by the if-then structure of
the language, which defines a natural “interface” between the tasks of the two power
users.

5 Lesson learnt and future developments

The experience we got from the case study has been encouraging and fruitful: the
community metaphor and the cooperation based approach was naturally appropri-
ated by the participants since they were able to recognize coordinative practices in
their every day learning activities and take them as starting point to tailor the given
system configuration. Sometimes users had some difficulties in separating the func-
tional aspects of an application (what it can do) from its coordination and awareness
behavior (when and how it should do something). This kind of difficulty emerged
when users collaborated with developers to include a new application functional-
ity (as reported in Section 4.2.3) or a totally new application (not reported in this
chapter) into the system: often users suggested functionalities that include coordi-
nation or awareness aspects. However, this problem almost disappeared when users
wanted to tailor how the application contributes to the overall system: in this case
they had to recognize which basic functionality was offered by the application, and
which new coordinative behavior had to be defined. The case study confirmed that
any adoption of tailorability and EUD environments requires an assisted learning
process: however, we perceived an increasing appropriation of the approach be-
cause the kind of support users requested was toward the solution of more complex
problems of integration and tailoring [10]. At the same time the case study raised
a set of basic requirements oriented to improve the usability of the approach. The
first issue is about the development of a graphical interface to represent the current
configuration of the system in terms of the integrated applications/devices and the
proxies of their collaborating users. This graphical interface would facilitate system
development and tailorability, and support rules organization. Actually, the levels
of abstraction described in Section 3 and the modularity based on the notion of

14 Marco P. Locatelli and Carla Simone

community of entities are a sound basis towards rules organization at each level.
A second issue concerns rules definition. Here it is not a matter of syntax com-
prehension: users correctly understood existing rules; nor of compliance with the
(semi-)formal language: Drools offers a rich syntax driven editor. When users came
to us for getting support, we observed that they did not own a strategy to transform
their intuition of what each entity should do into well-formed rules [5] and in so
doing they encountered recurrent problems: typically, users do not list all the con-
ditions that characterize the situation in which an action has to be executed; or they
forget to retract facts that no longer represent valid situation; or they are confused
about where to memorize information (i.e., facts) either in their private memory or
in the shared fulcra, and by default choose the second alternative; or finally, they
apply the traditional pattern of interaction based on request/response also when the
post/react pattern would be more appropriate since the capabilities of the current
collaborative context are not fully known. We are currently collecting the problems
that the past and ongoing experiences of usage are putting in evidence [14]: the aim
is to enrich the graphical interface with suitable guidelines that would warn users of
erroneous or at least dangerous rules formulations. A last and even more challenging
issue concerns the test of rules consistency in presence of the tailoring of a given
configuration [6]. Again, the rules organization mentioned above offers an initial
strategy based on modularity: however, more has to be done to support the check
of consistency. A possible solution could be based on the visualization of rules de-
pendencies, like cells dependencies in a spreadsheet: here however the solution has
to take into account the different levels of abstraction in which rules are organized.
In improving the CASMAS framework along the above lines we will continue to
adopt the iterative method based on users feedbacks, thanks to the technological
setting made available by the GAS-Intelligent Building project.

6 Acknowledgments

This work has been supported by the GAS-Intelligent Building project and with the
financial support of F.A.R. 2010.

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT Press,
Cambridge, MA, USA (1986)

2. Andriessen, J.: Archetypes of knowledge communities. In: P.v. van de Besselaar, G. De Miche-
lis, J. Preece, C. Simone (eds.) Second Communities & Technologies Conference (C&T2005),
pp. 191–214. Springer (2005)

3. Bannon, L., Bodker, S.: Constructing common information spaces. In: ECSCW’97: Proceed-
ings of the fifth conference on European Conference on Computer-Supported Cooperative
Work, pp. 81–96. Kluwer Academic Publishers, Norwell, MA, USA (1997)

End-users’ integration of applications and devices: a cooperation based approach 15

4. Benford, S., Fahlén, L.: A spatial model of interaction in large virtual environments. In:
ECSCW’93: Proceedings of the third conference on European Conference on Computer-
Supported Cooperative Work, pp. 109–124. Kluwer Academic Publishers, Norwell, MA, USA
(1993)

5. Berti, S., Paternò, F., Santoro, C.: Natural development of ubiquitous interfaces. Commun.
ACM 47(9), 63–64 (2004). DOI 10.1145/1015864.1015891

6. Burnett, M., Cook, C., Rothermel, G.: End-user software engineering. Commun. ACM 47(9),
53–58 (2004). DOI 10.1145/1015864.1015889

7. Cabitza, F., Locatelli, M.P., Simone, C.: Cooperation and ubiquitous computing: an architec-
ture towards their integration. In: Proceeding of the 2006 conference on Cooperative Systems
Design, pp. 86–101. IOS Press (2006)

8. Dixon, D.R.: The behavioral side of information technology. International Journal of Medical
Informatics 56, 117 – 123 (1999). DOI DOI: 10.1016/S1386-5056(99)00037-4

9. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR,
Upper Saddle River, NJ, USA (2005)

10. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G., Mehandjiev, N.: Meta-design: a
manifesto for end-user development. Commun. ACM 47(9), 33–37 (2004). DOI
10.1145/1015864.1015884

11. Fogli, D.: chap. End-User Development for E-Government Website Content Creation, pp.
126–145 (2009). DOI 10.1007/978-3-642-00427-8 8

12. Lieberman, H., Paternò, F., Wulf, V. (eds.): End User Development. No. 9 in Human-
Computer Interaction Series. Springer Netherlands (2006)

13. Locatelli, M.P., Loregian, M.: Active coordination artifacts in collaborative ubiquitous-
computing environments. In: B. Schiele, A.K. Dey, H. Gellersen, B.E.R. de Ruyter, M. Tsche-
ligi, R. Wichert, E.H.L. Aarts, A.P. Buchmann (eds.) Ambient Intelligence, European Confer-
ence, AmI 2007, Darmstadt, Germany, November 7-10, 2007, Proceedings, Lecture Notes in
Computer Science, vol. 4794, pp. 177–194. Springer (2007). DOI 10.1007/978-3-540-76652-
0 11

14. Locatelli, M.P., Simone, C.: Integration of services based on the community metaphor: some
guidelines from an experience of use. In: The 2nd International Workshop on End User De-
velopment for Services (EUD4Services). Torre Canne (Brindisi), Italy (2011)

15. Myers, B.A., Pane, J.F., Ko, A.: Natural programming languages and environments. Commun.
ACM 47(9), 47–52 (2004). DOI 10.1145/1015864.1015888

16. Repenning, A., Ioannidou, A.: What makes end-user development tick? 13 design guidelines.
In: H. Lieberman, F. Paternò, V. Wulf (eds.) End User Development, Human-Computer Inter-
action Series, vol. 9, pp. 51–85. Springer Netherlands (2006). DOI 10.1007/1-4020-5386-X 4

17. Rodden, T.: Populating the application: a model of awareness for cooperative applications. In:
CSCW ’96: Proceedings of the 1996 ACM conference on Computer supported cooperative
work, pp. 87–96. ACM, New York, NY, USA (1996). DOI 10.1145/240080.240200

18. Schmidt, K., Simone, C.: Coordination mechanisms: towards a conceptual foundation of
cscw systems design. Comput. Supported Coop. Work 5, 155–200 (1996). DOI
10.1007/BF00133655

19. Wenger, E.: Communities of practice; learning as a social system. Systems Thinker 9(5), 2–3
(1998)

20. Wulf, V., Pipek, V., Won, M.: Component-based tailorability: Enabling highly flexi-
ble software applications. Int. J. Hum.-Comput. Stud. 66(1), 1–22 (2008). DOI
10.1016/j.ijhcs.2007.08.007

21. Yu, J., Benatallah, B., Casati, F., Daniel, F.: Understanding mashup development. IEEE Inter-
net Computing 12, 44–52 (2008). DOI 10.1109/MIC.2008.114

